
Concept of an Interactive Web Portal for Teaching Prolog

Grzegorz J. Nalepa and Igor Wojnicki
Institute of Automatics,

AGH – University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland

gjn@agh.edu.pl wojnicki@agh.edu.pl

Abstract

The paper presents observations concerning teaching Prolog
to computer science students. Basing on these experiences an
interactive web-portal is proposed to support teaching. Some
guidelines for portal features are given. A prototype imple-
mentation based on DokuWiki is also described.

Introduction
This paper discusses practical problems encountered in
teaching Artificial Intelligence and Prolog to computer sci-
ence students. One of the main issues with teaching Pro-
log is a large conceptual difference between declarative and
object-oriented programming paradigms, that the older stu-
dents are used to. In general, students find learning Prolog
a hard experience. Compared to imperative programming,
declarative programming requires switching to a different
way of thinking Because teaching AI is usually offered as a
high-level course (for graduate students), at that time stu-
dents are already well accustomed to the imperative pro-
gramming paradigm, and switching to the declarative one
usually poses a real challenge.

This paper proposes a web-based portal providing a learn-
ing environment for Prolog, that tries to address the prob-
lems students have. In the portal a practical Prolog course
is contained, along with several hundred examples of Prolog
programs. The portal allows students not only to obtain in-
formation, but also provides means for expressing feedback
in the learning process. The students can write comments
and suggest solutions to the problems they encountered. The
portal is based on the wiki paradigm and it is implemented
using a PHP-based DokuWiki solution. This wiki combines
a number of presentation options with advanced versioning
features. It is aimed at supporting the courses in the Institute
of Automatics, AGH University of Science and Technology.

Teaching AI with Prolog
Teaching Artificial Intelligence (AI) (Russell & Norvig
2003; Negnevitsky 2002) is a non-trivial task. It is a do-
main combining knowledge from multiple fields, including
computer science, psychology, mathematics, etc. Some of

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the achievements from the field of AI have been adopted in
applied computer science (CS). However, AI still remains a
domain of an active development of non-classic approaches
to problem solving. So, building AI systems may require a
number of different skills.

Because of this complexity, teaching AI poses a number
of challenges. Surprisingly, teaching applied AI to CS stu-
dents may sometimes be more difficult than to other engi-
neering students. CS students come to the AI class with a
number of well founded ideas about “programming”, “de-
sign”, or “knowledge”. They are also very well equipped
with efficient programming tools to solve “classic CS” prob-
lems. However, problems considered in AI are often more
general or more abstract. CS students are mostly convinced
that solving problems is “just programming”, and program-
ming is about writing and combining functions, objects that
are in the end executed sequentially. However, AI effi-
ciently combines a number of non-classic “programming”
approaches, and does not enforce a single paradigm, quite
often combining imperative and declarative approaches.

These problems are especially visible when teaching non-
classic programming languages such as Lisp or Prolog (Cov-
ington, Nute, & Vellino 1996; Bratko 2000). Compared to
C/C++/Java, Prolog is a very high-level language, based on
completely different concepts. One of the main problems is
the the extensive use of recursion in Lisp and Prolog. Stu-
dents are not very familiar with it, at least not as an uni-
versal programming technique. They think in terms of itera-
tive programming and loops. The difference between Prolog
and these languages makes it almost impossible for students
to learn it as “yet another programming language”.1 This
approach does not work, since in Prolog, there are no key-
words, functions, methods, or objects, it even does not use a
clear input/output concept. It turns out to be extremely ex-
pressive, though. Prolog operates on a more abstract knowl-
edge level (Newell 1982), while CS students mostly think on
a data level. Similar conceptual problems are also related
to some other non-classic programming paradigms, e.g. in
functional programming. In general, students have trouble
with switching to other programming paradigms.

1This approach could work quite well for C/C++/Java/PHP,
even though in fact students should rather be taught OOP not as
an “extension” of procedural programming.

Proceedings of the Twenty-First International FLAIRS Conference (2008)

240



It was observed that some students have less problems
with grasping this different approach. Moreover, they tend
to discuss the approach with others. This gives a hint that a
highly collaborative information sharing platform could help
out these weaker students to keep pace with the better ones.

Lessons Learned
Based on the authors experiences, to motivate students and
to make them interested in the subject of learning Prolog
and its applications the following guidelines can be applied.
They are based on blended learning approach, combining e-
learning, lectures and lab activities. These are:

• a highly interactive learning experience,

• ability to extend the learning experience with e-learning
tools,

• capture student in-class observations and incorporate
them into the course syllabus,

• share the above observations with all students,

• provide illustrative examples,

• show interesting and advanced applications, solutions to
real-world problems,

• and last but not least, make it fun.

Capturing in-class student observations and sharing them
with other students improves the teaching process. Declar-
ative programing is mostly about thinking not implement-
ing. While implementing is something the students are ac-
customed to, thanks to the imperative programing courses,
thinking about the problem to solve, poses a real challenge
to some of them.

Usually there are a few bright students who enjoy the
declarative approach and they are fully capable of such pro-
gramming. Sharing their experience with others is a pre-
cious asset. Making it persistent in the form of a knowledge
base for the course is an asset other students can use.

The course knowledge base should consist of: theoretical
information about Prolog, illustrative examples with varying
complexity, supported by comments, thoughts and improve-
ments made by other students, real-world applications, in-
cluding solving problems Prolog is designed for. The knowl-
edge base should be accessible through an interactive, multi-
user, multi-access environment. Creating such an environ-
ment makes the learning process more stimulating, and since
students get support from their classmates, it improves the
overall experience.

Gathering such knowledge about programming has sev-
eral requirements. A learning environment should provide:

• version control – it should be always possible to restore
information which has been overwritten or changed in a
wrong way,

• search capabilities – searching for topics, problems, solu-
tions, and explanations; encyclopedia-like features,

• syntax highlighting – to visualize programming language
code in a more user friendly form,

Last but not least it is important to provide a system built
in the native (polish) language. Most of the tutorials and
examples for Prolog are in English. Even though students
know and use English, the learning experience can be largely
improved, by providing examples using polish, since Prolog
does not enforce any English keywords anyway.

To address the problems identified, and to meet the re-
quirements, in the next section a solution is proposed.

Proposed Solution: Wiki-based Teaching
Considering challenges mentioned before the concept of an
interactive portal for teaching Prolog has been formulated.
The basic idea is to support the Prolog class with an inte-
grated web-based tool, meeting the following requirements:

• it is able to provide effective feedback in the teaching pro-
cess,

• it captures the knowledge about problem areas discovered
by the students, during the class,

• it provides a platform for distributed authoring, for several
teachers that teach the same class to different students,

• it allows students to record their ideas, and possibly ex-
tend the class.

All these requirements lead to choosing a collaboration en-
vironment based on the wiki concept.

Wiki Systems
The Wiki concept emerged in the 90’s. The main idea was to
create a simple and expressive tool for communication and
knowledge sharing. Thus, the main features follow this idea.

A wiki system is mainly a collaboration tool. It allows
multiple users to access, read, edit, upload and download
documents. It has a regular client-server architecture. Doc-
uments are text-based, enriched with so-called wiki markup.
It is a simplistic, tag-based, text only language which allows
the user to annotate text with information regarding its struc-
ture and presentation. The tags allow users to make sections,
subsections, tables, items and other typographic and struc-
tural operations. A wikitext remains human readable, tags
are intuitive and easy to learn.

Each document is uniquely identified by a keyword,
which makes the wiki concept similar to the encyclope-
dia concept. Furthermore a document, in addition to ty-
pographic tags mentioned earlier, can contain hyperlinks to
other documents. A hyperlink is a document name enclosed
by a link tag. The wiki allows users to upload images, as
well as other files and link them together.

Wikis are mostly web-based. The web interface allows
users to access, render and edit wiki pages. Depending on
the particular solution there might be access control and au-
thorization mechanisms implemented as well. A wiki sys-
tem is usually based on some server side processing tech-
nologies providing the web application, and optionally a
database backend. As a frontend a web browser is used.

One of the most important features of a wiki is an inte-
grated version control. Page modifications are recorded. At
any time a user can access any previous version of any page.

241



It is worth pointing out that Wiki Systems currently blend
with Content Management Systems (CMS). Some CMS pro-
vide Wiki functionality while some Wikis evolve into CMS.
Similarly Wikis are more and more often merged with e-
Learning systems to support collaborative knowledge gath-
ering and sharing.

The Dokuwiki System
One of the most interesting Wiki systems for devel-
opers is DokuWiki (wiki.splitbrain.org/wiki:
dokuwiki). It is designed to be both easy to use and
easy to set up. DokuWiki is based on PHP and does not
require any database backend. Pages are stored as ver-
sioned text files which enables easy backup-restore opera-
tions. It allows for image embedding and file upload and
download. Pages can be arranged into so-called names-
paces which act as a tree-like hierarchy similar to direc-
tory structure. It also provides syntax highlighting for in-
page embedded code for programming languages such as:
C/C++, Java, Lisp, ADA, PHP, SQL and others, using
GeSHi (qbnz.com/highlighter).

Furthermore it supports extensive user authentication and
authorization mechanisms including Access Control Lists
(ACL). Its modularized architecture allows the user to ex-
tend DokuWiki with plugins which provide additional syn-
tax and functionality. The most popular plugins provide:
user and ACL management, blog, gallery of pictures, dis-
cussion board, calendar, and LaTeX symbols rendering.

System Prototype
A prototype of the Prolog Wiki System is currently (fall
2007) being implemented in the Institute of Automatics,
AGH, reachable at the address https://ai.ia.agh.
edu.pl/wiki/prolog. The configuration includes:
DukuWiki system, running on the Apache webserver, ver-
sion 2, with the PHP5 environment, in the Debian/GNU
Linux 4 “Etch” operating system. The system includes the
Prolog syntax highlighting module, developed by students.

The Prolog Wiki System stores domain information about
AI and Prolog. It includes problem statements, their solu-
tions, examples, and lab assignments as well. Both teach-
ers and students are allowed to modify certain parts of the
wiki. All changes in the wiki are subject to version con-
trol. They can also upload and download files. Prolog lan-
guage code embedded into wiki pages is automatically syn-
tax highlighted, by a dedicated GeSHi module for Prolog,
developed by students (see https://ai.ia.agh.edu.
pl/wiki/prolog:geshi_prolog).

Basic E-Learning
The prototype provides basic e-learning features. Students
can study after or before the class some of the assignments
are given remotely using the system

Capturing the Experience
The wiki system is interactive. It is open to the students
during, and after class. So, it is possible to capture student
in-class observations and incorporate them into the course

syllabus on-line. Students can also write comments to the
examples, or provide alternate solutions to the examples.

Programing Examples
In the 2006 and 2007 class of “Knowledge Engineering
Methods” several teams of students were supposed to select,
describe, and test in SWI-Prolog some of the illustrative ex-
amples of Prolog code, freely available on the Internet for
students and teachers. These projects resulted in selecting
about 400 examples of Prolog code. Currently the database
of examples is being integrated with the system.

The code library has been build using examples from sev-
eral Prolog books (in cases where the examples where freely
available), including (Bratko 2000; Covington, Nute, & Vel-
lino 1996; Sterling & Shapiro 1994), as well as Prolog tuto-
rials. So far, the examples have been divided into three gen-
eral groups: learning the Prolog language, solving classic
AI problems, knowledge representation and expert systems.
The idea is to work with students on the selection and cat-
egorization of the examples. The students annotate the ex-
ample base, providing information which examples proved
useful during the class. This experience helps in workings
with subsequent student groups.

Advanced applications
Besides some “classic” Prolog topics, several advanced is-
sues are being presented in the system. Currently two main
themes are: integration, and business rules. Exercises on
Prolog integration with other languages, including ANSI C,
C++, and Java, are based on standard packages provided by
the SWI-Prolog. The business rules topic is related to the
practical design and implementation of rule-based logic for
business applications. These exercises give students some
ideas about possibilities of combining the features of Prolog
with existing solutions.

Make it fun: Robotics
To give students a real-world application of the Prolog lan-
guage an intelligent control theme emerged. The main
idea is to use AI techniques to program and control mo-
bile robots. There is a multi-layer architecture used: low
level control primitives in an imperative programming lan-
guage, Intelligent Control based on Prolog. Currently two
platforms are being used: Hexor and LEGO Mindstorms.

HexorII is a mobile robot platform provided by Stenzel
(stenzel.com.pl). The robot moves like a scorpion, us-
ing three servos: one for tilt, two for forward and backward
leg moving. With this kind of construction HexorII executes
the fast insect movement algorithm.

LEGO Mindstorms NXT is a standard platform for teach-
ing robotics. It is being introduced in the class in Fall
2007. Currently, the possibilities of controlling Mindstorms
with Prolog are limited. Several student projects have been
started to provide Prolog support for Mindstorms, these are:

• providing a low-level communication module using
USB or Bluetooth; three main options are consid-
ered: direct Prolog serial port programming, using an
ANSI C based stack integrated with Bricx (bricxcc.

242



sourceforge.net), and integration with the LeJOS
(lejos.sourceforge.net) iConnect module,

• providing a middle-level Prolog API for controlling NXT
on the basic component level, that is motor and sensor
communication, a compatibility layer with LeJOS is con-
sidered here,

• a high-level robotic API to control navigation, etc.

The wiki system proved to be quite helpful in coordinating
multiple student groups working on the Mindstorms API.

The Big Picture
Interactions between users, teachers and students, and the
prototype system is given in Fig. 1. Dashed arrows in-
dicate that particular element is derived from or it is re-
lated to another one. All interactions take place in the
Wiki system. There are AI Classes and AI Project Sub-
jects prepared by teachers. Students are welcome to mod-
ify contents of the classes and add comments and proposals.
These comments/proposals always regard particular topic:
Prolog Classes, Advanced Applications, Intelligent Control
Classes, or Prolog Programming Examples. Students are
also welcome to document AI Projects they take. These
projects are directly derived from the AI Project Subjects
specified by teachers.

Currently the Prolog Wiki System is swallowed by aiWiki,
a more general system hosting, in addition to Prolog, general
AI topics and serving as a collaboration platform for several
research projects.

Related Research
In this paper a personal perspective on teaching Prolog to CS
graduates in the Institute of Automatics at AGH University
of Science and Technology is given. Of course the topic of
difficulties with teaching Prolog is not new.

Some of the guidlines and other teachers’ experi-
ences have been published and discussed numerous times
(e.g. (Brna, Pain, & du Boulay 1990; Hietala 1993)). How-
ever, it is worth noting that teaching techniques are depen-
dent on the supporting tools that are available. There are
some interesting studies on how choosing different tools can
improve the learning process (Yang & Joy 2007). The partic-
ular choices depend on both student and teacher preference.

Currently there is a large number of specialized e-learning
tools, with Moodle being a prime example. However, it was
decided that a simple wiki-based system is a better solution
for this class. Extra features provided by Moodle were not
useful enough to justify the large overhead and complexity
imposed by this system. The ”less-is-more” approach of the
DokuWiki along with its extendibility via plugins proved to
be much more efficient.

Evaluation
The main AI wiki system was started in early 2007 to sup-
port a research project. The prototype Prolog portal was im-
plemented in fall 2007. So far, the system supported the:

• the AI languages class (lab) of 40 students, Fall 2007,

• the Knowledge Engineering projects, 40 students, Spring
2007,

• the Knowledge Engineering languages and tools class
(lab), 60 students, Spring 2007.

It can be observed, that while students enjoy the idea of an
interactive portal, many of them are not very active in en-
riching it if they are not obliged to. On the other hand, dur-
ing the practical coordination of KE projects, were individ-
ual students where supposed to record there progress in the
wiki, their responsiveness was way better then with the reg-
ular approach (meeting in class and email contact).

When it comes to the practical enrichment of the Prolog
examples base and the lab the results are inconclusive so
far. It seems that only the best and most motivated students
spend their time working in the wiki. While their insight is
valuable to the teachers and other students, some ways of
encouraging the others are tested.

Future Work
There are several subprojects in progress related to teach-
ing AI. They are focused on practical applications of AI
techniques and Prolog in particular. They involve both fac-
ulty and graduate students. Collaboration between students
working on the projects and faculty members is provided
through aiWiki. These projects serve also as examples for
students learning Prolog, proving its practical relevance.

Prolog Server Pages
The project aims at deploying and using a technology called
Prolog Server Pages (PSP). It regards a client-server archi-
tecture based on HTTP. It is a server-side scripting language
based on Prolog. PSP is embedded in HTML documents
and interpreted as a Prolog program. The output is then sent
to the client (i.e. a browser) together with the native HTML
code. There are several approaches to PSP available. Some
of them are: Prolog Server Pages by Mauro Di Nuzzo (www.
prologonlinereference.org/psp.psp) and SWI
Prolog HTTP Server (www.swi-prolog.org).

Using Prolog as such a scripting languages turns to be
interesting for many graduate students. It also turns to be
efficient in terms of programming and XML parsing.

Extending Wiki with Prolog
To support the AI teaching process an idea of a Semantic
Wiki based on Prolog has emerged. It would support run-
ning Prolog code on the web server while rendering a wiki
page. Contents of such a page consist of a human-readable
text, and optionally images, attachments etc, and machine-
readable and automatically interpreted knowledge express-
ing what the page is about.

To support Prolog programming within the wiki there is
an ongoing prototype implementation of a Prolog inference
engine embedded into a DokuWiki system working as its
extension. It is called Prolog DokuWiki.

As a result, in addition to text-based human-readable con-
tents, there are Prolog clauses embedded into wiki pages.

243



Advanced Applications

Intelligent Control Classes

AI Project Subjects

AI Classes

Prolog Classes

Prolog Programming Examples

WIKI

Teacher Student

Comments/Proposals

AI Projects

Figure 1: Interactions between users and the prototype system

These clauses can be automatically interpreted upon request-
ing the page. Results of the interpretation (inference) pro-
cess are directly rendered into the page.

This constitutes a Semantic Wiki System based on
Prolog. It is similar, to some extent, to the seman-
tic wiki systems currently available (Semantic MediaWiki
(semantic-mediawiki.org), IkeWiki (ikewiki.
salzburgresearch.at), SweetWiki (argentera.
inria.fr/wiki)). Other semantic wiki systems use
XML to annotate gathered information semantically while
Prolog DokuWiki uses Prolog clauses. Furthermore, the
clauses are interpreted upon displaying a given page.

The extension introduces a new element indicated by a
tag called prolog. Any text within the element is treated
as Prolog clauses, it is interpreted by an externally launched
Prolog inference engine. As the inference engine SWI-
Prolog is used. Upon rendering a page with a prolog ele-
ment, the wiki system launches the inference engine which
processes clauses within the tag. Standard output of the in-
ference process is displayed in place of the element.

There are special predicates which allow populating the
knowledge base with clauses from arbitrary chosen pages or
namespaces. There is a wiki/1 predicate defined which
triggers the inference engine to interpret clauses embedded
within other wiki pages. If the first argument is a valid wiki
page, the predicate browses it and interprets (consults) all
clauses within prolog tags on this page. If the argument
is a namespace it browses all pages from this namespace
and interprets all clauses found within the pages. There is
another predicate wiki_recursive/1 which interprets
clauses from all pages in the given namespace and all names-
paces within it recursively.

Summary
This paper presents some observations on teaching Prolog to
Computer Science students. Based on authors’ experiences,
a concept of an interactive Wiki is proposed. The Wiki aims
at capturing student experiences and comments and provides

a basic e-learning solution.
Currently a prototype of the system is running at the Insti-

tute of Automatics at AGH University of Science and Tech-
nology. The system is being used for the Fall 2007 course
in AI languages, as well as the Spring 2008 Knowledge En-
gineering class. So far, it helped a lot in improving both the
learning and teaching experience.

Acknowledgements The paper is supported by the
HeKatE Project funded from 2007–2009 resources for sci-
ence as a research project.

References
Bratko, I. 2000. Prolog Programming for Artificial Intelli-
gence. Addison Wesley, 3rd edition.
Brna, P.; Pain, H.; and du Boulay, B. 1990. Teaching, learn-
ing and using prolog: Understanding prolog. Instructional
Science 19(4–5):247–256.
Covington, M. A.; Nute, D.; and Vellino, A. 1996. Prolog
programming in depth. Prentice-Hall.
Hietala, P. 1993. Teaching ai through prolog programming
techniques. Comput. Educ. 20(1):133–139.
Negnevitsky, M. 2002. Artificial Intelligence. A Guide to
Intelligent Systems. Harlow, England; London; New York:
Addison-Wesley. ISBN 0-201-71159-1.
Newell, A. 1982. The knowledge level. Artificial Intelli-
gence 18(1):87–127.
Russell, S., and Norvig, P. 2003. Artificial Intelligence: A
Modern Approach. Prentice-Hall, 2nd edition.
Sterling, L., and Shapiro, E. 1994. The Art of Prolog. Ad-
vanced Programming Techniques (Logic Programming).
MIT Press.
Yang, S., and Joy, M. 2007. Approaches for learning
Prolog programming. Innovation in Teaching And Learn-
ing in Information and Computer Sciences 6(4).

244




